
Easy Theora Programming With Etheora.

Ribamar Santarosa, ribamar@gmail.com

October 2007

Etheora is a C library aimed to provide a straightforward API for programming applications that en-
codes or decode theora videos, using ogg as container. Etheora users don’t need to know nothing about the
libtheora or libogg (and derivatives) API.

Etheora doesn’t have audio/speech support yet. Although with etheora it’s possible to get the video data from a video
that contains audio/speech, audio/speech data will be unavailable.

1 Installing.

No etheora installation. Just:

1. download the three files (etheora.c, etheora.h, etheora-int.h),

2. put the .h files in an include-findable directory (or tell your compiler to search the download direc-
tory, e.g, -Idownload dir in gcc)),

3. and add etheora.c to your build project (e.g. add download dir/etheora.c to gcc command-
line).

But libtheora (development version, if your system can tell) is required to be present in the system.
Etheora will work in the systems where libtheora works.

2 Encoding.

Encoding steps:

1. Declare an etheora context structure,

etheora_ctx ec;

2. Configure the encoder with etheora enc setup(), e.g,

etheora_enc_setup(&ec, 640, 480, ETHEORA_ASPECT_NORMAL,
12, 1, fout, finfo);

will setup to encode a 640:480, 12/1 frames per second video, with 4:3 aspect ratio. You may change
to ETHEORA ASPECT WIDE SCREEN to get a 16:9 aspect ratio or ETHEORA ASPECT PRESERVE to pre-
serve the width:height ratio. In this case, 640/480 = 4/3, the latter wouldn’t produce difference.

The encoded video will be written to the file descriptor FILE* fout. Debug info will be written to
FILE* finfo. You may want set this as your system’s null device file (e.g. /dev/null) as a large
amount of information can be printed.

1



3. The unnexperienced theora user may jump this step. The experienced libtheora user has now a last
chance to change theora info and theora comment values before encoding:

char *vendor = "Vendor name";
ec.ti.target_bitrate = 200000;
ec.tc.vendor = vendor;
/*etc*/

Or just maintain the default values assigned by etheora when configuring.

4. Start the encoder engine:

etheora_enc_start(&ec);

5. Draw a frame. For e.g, to draw in YUV colorspace,

etheora_enc_yuv_draw(&ec, i, j, y_value, u_value, v_value);

will draw the pixel in the frame coordinate (i, j).

Although libtheora deals with frames in YUV, etheora supports transparent drawing in RGB with
another function:

etheora_enc_rgb_draw(&ec, i, j, r_value, g_value, b_value);

Other colorspace may be available in the future.

For the experienced theora user: etheora supports yuv buffers of the kinds OC PF 420, OC PF 422
and OC PF 444 in despite of your libtheora version supporting them or not. Access to these frame
buffers is transparent, using the functions above. etheora enc setup() configures the encoder to
use OC PF 420 which is the only one known to be supported by any libtheora version. If you’re deal-
ing with different chromas, you may be interested in the function etheora resample(yuv buffer

*source, yuv buffer *dest) for converting them.

6. If the frame you’ve just drawn isn’t the last one you want to encode, submit it to encoding by calling:

etheora_enc_nextframe(&ec);

Go back to draw more frames!

7. If the frame you’ve just drawn is the last one, you may submit it by finishing the decoding process:

etheora_enc_finish(&ec);

And we’re done.

3 Decoding.

Decoding steps:

1. Declare an etheora context structure,

etheora_ctx ec;

2



2. Configure the decoder with etheora dec setup(), e.g,

etheora_dec_setup(&ec, fin, finfo);

The video will be read from the file descriptor FILE* fin. Debug info will be written to FILE*
finfo. You may want set this as your system’s null device file (e.g. /dev/null) as a large amount
of information can be printed.

3. Start the encoder engine:

etheora_dec_start(&ec);

4. Video info can now be known and shown:

printf("video dimensions: %u:%u\n", etheora_get_width(&ec),
etheora_get_height(&ec));

printf("frame rate : %u:%u fps\n", etheora_get_fps_numerator(&ec),
etheora_get_fps_denominator(&ec));

printf("aspect ratio: %u:%u\n", etheora_get_aspect_numerator(&ec),
etheora_get_aspect_denominator(&ec));

The experienced libtheora user can read theora info and theora comment values:

printf("video target bitrate: %i\n", ec.ti.target_bitrate);
printf("vendor name: %s\n", ec.tc.vendor);
/*etc*/

5. Loop to obtain all frames. When etheora dec nextframe() returns not zero it can’t read more
data.

while(!etheora_dec_nextframe(&ec)){
...

}

6. After decoding a frame with etheora dec nextframe(), frame data is available to be read. To
read using YUV colorspace:

etheora_dec_yuv_read(&ec, i, j, y_value, u_value, v_value);

will draw the pixel in the frame coordinate (i, j).

Although libtheora deals with frames in YUV, etheora supports transparent reading in RGB with
another function:

etheora_enc_rgb_read(&ec, i, j, r_value, g_value, b_value);

Other colorspace may be available in the future.

For the experienced user, the same note shown when etheora enc yuv draw() and etheora enc rgb draw()
were presented, in the section Encoding, is valid.

7. When the decoding loop finishes, you may free the structures with

etheora_dec_finish(&ec);

And we’re done.

3



4 Examples/Building Examples.

3 simple examples can be downloaded: encoder-example.c, decoder-example.c and
decoder-example-opencv.c

4.1 encoder-example.c

A very simple encoder that allows you to generate videos with mathematical functions.
Using gcc, you can build the encoder-example with this command:

gcc encoder-example.c etheora.c -I. -ltheora -o encoder-example

Assuming etheora files are in the same directory as encoder-example.c.
Then, this command:

./decoder-example output-video.ogg

will generate a video and write it to the output-video.ogg.
You can open encoder-example.c and play with the numeric parameters of etheora enc rgb draw(),

or use etheora enc yuv draw() instead. Recompile the encoder and get different videos.

4.2 decoder-example.c

A very simple decoder that does nothing but decoding video. It allows you to read the pixels of decoded
frames.

Using gcc, you can build the decoder-example with this command:

gcc decoder-example.c etheora.c -I. -ltheora -o decoder-example

Assuming etheora files are in the same directory as decoder-example.c.
Then, this command:

./decoder-example input-video.ogg

will read a video from input-video.ogg.

4.3 decoder-example-opencv.c

A very simple decoder that decodes frames and draws them in a opencv/highgui window. It doesn’t have a
good performance, it’s only to provide a visible result of the decoding process. Also it doesn’t deal with the
correct video frame rate, it just waits for 100 ms after drawing a frame. Requires, of course, opencv/highgui
present in the system.

Using gcc, you can build the encoder-example with this command:

gcc -Wall decoder-example-opencv.c etheora.c \
-lhighgui -lstdc++ -I. -ltheora -o decoder-example-opencv

Assuming etheora files are in the same directory as decoder-example-opencv.c.
Then, this command:

./decoder-example-opencv input-video.ogg

4



will read a video from input-video.ogg and draw in a opencv/highgui window:

Figure 1: OpenCV/Highgui window for decoding theora videos.

5


	Installing.
	Encoding.
	Decoding.
	Examples/Building Examples.
	encoder-example.c
	decoder-example.c
	decoder-example-opencv.c


