

Felipe Portavales Goldstein portavales@gmail.com

Color coding

Color coding

Human eye color perception

Color coding

Human eye Colour x Luminance perception

Color coding

Human eye Colour x Luminance perception

R (8 bits) G (8 bits) B (8 bits) Each color is coded separately

- Y (8 bits) Cb (4 bits) Cr (4 bits)
- Y : Luminance Cb : Blue color Cr : Red color

Green color is presense of luminance and absence of Blue and Red color

Digital signals / sampling

Digital signals / sampling

Time

Digital signals / sampling

Sampling Aliasing:

Sample rate must be twice as input bandwidth

Digital signals / sampling

Sampling images

Quantizing

7 possible quantized amplitude values: need 3 bits to represent

Multiplexing

Fourrier Transform

Fourrier Transform

Fourrier Transform

The transform must consider the complete signal history to get the exact frequencies in the signal.

To apply the transform we must known the signal behavior since $-\infty$ to $+\infty$

Is it possible ?

And, what if the signal behaves like this :

Windowing

The windowing must be applied in the signal before the Fourrier transform, to focalize the analysis

Windowing

The windowing can be used to divide the signal in small pieces, and transform them separately

Windowing

Another way to view:

Windowing

The Heisenberg uncertainty principle states that: the knowledge of the position of a particle is inversely proportional to the knowledge of its energy

It is the same to say: knowledge about time is inversely proportional to knowledge about frequency

Position knowledge is relative to time

Energy knowledge is related to frequency

Windowing

Pre-echo

Fourrier Transform in a image

This picture is the cover of book: MPEG-2 , John Watkinson , Focal Press

Wavelet transform

Wavlet dont use endless sine wave functions as its basis, but instead, use functions that are finite on time axis.

The window lenght is variable and is inversely proportional to the frequency.

High frequencies are transformed with short basis functions and therefore are accurately located. Low frequencies are transformed with long basis functions which have good frequency resolution.

Fourrier Transform

Wavelet Transform $\sqrt{1}$

Frame subdivision

Frame subdivision

Subdivision of a Frame into blocks and super blocks Each color plane has its own set of blocks and super blocks

Intra Frame

Intra-coding explores redundancy within a picture

Inter Frame

Inter-coding explores redundancy between pictures

Inter Frame

Golden Frame (intra)

Coded frame

Inter Frame

References

- Theora I Specification; Xiph.org Foundation
- John Watkinson; MPEG-2 ; Focal Press
- Martin Ruckert; Understanding MP3: Syntax, Semantics,

Mathematics, and Algorithms ; Viewg

- http://www.animemusicvideos.org/guides/avtech/video3.htm
- http://www.complextoreal.com/tutorial.htm
- http://cns-alumni.bu.edu/~slehar/fourier/fourier.html