Easy Theora Programming With Etheora.

Ribamar Santarosa, ribamar@gmail.com

October 2007

Etheora is a C library aimed to provide a straightforward API for programming applications that en-
codes or decode theora videos, using ogg as container. Etheora users don’t need to know nothing about the
libtheora or libogg (and derivatives) APL

Etheora doesn’t have audio/speech support yet. Although with etheora it’s possible to get the video data from a video
that contains audio/speech, audio/speech data will be unavailable.

1 Installing.

No etheora installation. Just:

1.
2.

download the three files (etheora.c, etheora.h, etheora-int .h),

put the . h files in an include-findable directory (or tell your compiler to search the download direc-
tory, e.g, ~-Idownload-dir in gcc)),

and add etheora. c to your build project (e.g. add download-dir/etheora.c to gcc command-
line).

But libtheora (development version, if your system can tell) is required to be present in the system.
Etheora will work in the systems where libtheora works.

2 Encoding.

Encoding steps:

1.

Declare an etheora context structure,
etheora_ctx ec;
Configure the encoder with etheora_enc_setup (), e.g,

etheora_enc_setup(&ec, 640, 480, ETHEORA_ASPECT_NORMAL,
12, 1, fout, finfo);

will setup to encode a 640:480, 12/1 frames per second video, with 4:3 aspect ratio. You may change
to ETHEORA_ASPECT_WIDE_SCREEN to get a 16:9 aspect ratio or ETHEORA_ASPECT_PRESERVE to pre-
serve the width:height ratio. In this case, 640/480 = 4/3, the latter wouldn’t produce difference.

The encoded video will be written to the file descriptor FILE+ fout. Debug info will be written to
FILEx finfo. You may want set this as your system’s null device file (e.g. /dev/null) as a large
amount of information can be printed.

3. The unnexperienced theora user may jump this step. The experienced libtheora user has now a last
chance to change theora_info and theora_comment values before encoding:

char xvendor = "Vendor name";
ec.ti.target_bitrate = 200000;
ec.tc.vendor = vendor;

/xetcx/

Or just maintain the default values assigned by etheora when configuring.

4. Start the encoder engine:
etheora_enc_start (&ec) ;

5. Draw a frame. For e.g, to draw in YUV colorspace,
etheora_enc_yuv_draw(&ec, i, j, y_value, u_value, v_value);

will draw the pixel in the frame coordinate (i, j).

Although libtheora deals with frames in YUV, etheora supports transparent drawing in RGB with
another function:

etheora_enc_rgb_draw(&ec, i, j, r_value, g_value, b_value);

Other colorspace may be available in the future.

For the experienced theora user: etheora supports yuv_buffers of the kinds OC_PF_420, OC_PF_422
and OC_PF_444 in despite of your libtheora version supporting them or not. Access to these frame
buffers is transparent, using the functions above. etheora_enc_setup () configures the encoder to
use OC_PF_420 which is the only one known to be supported by any libtheora version. If you're deal-
ing with different chromas, you may be interested in the function etheora_resample (yuv_buffer
xsource, yuv.buffer xdest) for converting them.

6. If the frame you've just drawn isn’t the last one you want to encode, submit it to encoding by calling:
etheora_enc_nextframe (&ec) ;

Go back to draw more frames!

7. If the frame you've just drawn is the last one, you may submit it by finishing the decoding process:
etheora_enc_finish (&ec);

And we’re done.

3 Decoding.

Decoding steps:

1. Declare an etheora context structure,

etheora_ctx ec;

2. Configure the decoder with etheora_dec_setup(),e.g,
etheora_dec_setup(&ec, fin, finfo);

The video will be read from the file descriptor FILE+ fin. Debug info will be written to FILE
finfo. You may want set this as your system’s null device file (e.g. /dev/null) as a large amount
of information can be printed.

3. Start the encoder engine:
etheora_dec_start (&ec);

4. Video info can now be known and shown:

printf ("video dimensions: %u:%u\n", etheora_get_width (&ec),
etheora_get_height (&ec));
printf ("frame rate : %u:%u fps\n", etheora_get_fps_numerator (&ec),
etheora_get_fps_denominator (&ec));
etheora_get_aspect_numerator (&ec),
etheora_get_aspect_denominator (&ec));

printf ("aspect ratio: %u:%u\n",

The experienced libtheora user can read theora_info and theora_comment values:

printf ("video target bitrate: %$i\n", ec.ti.target_bitrate);
printf ("vendor name: %$s\n", ec.tc.vendor);
/*xetc*/

5. Loop to obtain all frames. When etheora_dec_nextframe () returns not zero it can’t read more
data.

while (!etheora_dec_nextframe (&ec)) {

}

6. After decoding a frame with etheora_dec_nextframe (), frame data is available to be read. To
read using YUV colorspace:

etheora_dec_yuv_read(&ec, i, j, y_value, u_value, v_value);

will draw the pixel in the frame coordinate (i, j).

Although libtheora deals with frames in YUYV, etheora supports transparent reading in RGB with
another function:

etheora_enc_rgb_read(&ec, i, j, r_value, g_value, b_value);

Other colorspace may be available in the future.

For the experienced user, the same note shown when etheora_enc_yuv_draw () and etheora_enc_rgb_draw ()
were presented, in the section Encoding, is valid.

7. When the decoding loop finishes, you may free the structures with
etheora_dec_finish (&ec);

And we’re done.

4 Examples/Building Examples.

3 simple examples can be downloaded: encoder-example.c, decoder—-example.c and
decoder—-example—-opencv.c

4.1 encoder-example.c

A very simple encoder that allows you to generate videos with mathematical functions.
Using gcc, you can build the encoder-example with this command:

gcc encoder—-example.c etheora.c -I. -ltheora -o encoder-example

Assuming etheora files are in the same directory as encoder-example. c.
Then, this command:

./decoder—-example output-video.ogg

will generate a video and write it to the output-video. ogg.
You can open encoder-example. c and play with the numeric parameters of etheora_enc_rgb_draw (),
or use etheora_enc_yuv_draw () instead. Recompile the encoder and get different videos.

4.2 decoder-example.c

A very simple decoder that does nothing but decoding video. It allows you to read the pixels of decoded
frames.
Using gcc, you can build the decoder-example with this command:

gcc decoder-example.c etheora.c -I. —-ltheora -o decoder-example

Assuming etheora files are in the same directory as decoder-example. c.
Then, this command:

./decoder-example input-video.ogg

will read a video from input-video.ogg.

4.3 decoder-example-opencv.c

A very simple decoder that decodes frames and draws them in a opencv /highgui window. It doesn’t have a
good performance, it’s only to provide a visible result of the decoding process. Also it doesn’t deal with the
correct video frame rate, it just waits for 100 ms after drawing a frame. Requires, of course, opencv/highgui
present in the system.

Using gec, you can build the encoder-example with this command:

gcc —-Wall decoder-example-opencv.c etheora.c \
—lhighgui -1lstdc++ -I. -ltheora -o decoder-example-opencv

Assuming etheora files are in the same directory as decoder-example-opencv.c.
Then, this command:

./decoder—-example—opencv input-video.ogg

will read a video from input-video.ogg and draw in a opencv/highgui window:

= BGR (=)x]

Figure 1: OpenCV /Highgui window for decoding theora videos.

	Installing.
	Encoding.
	Decoding.
	Examples/Building Examples.
	encoder-example.c
	decoder-example.c
	decoder-example-opencv.c

