% Attempts to diagnose AEC problems from recorded samples % % out = echo_diagnostic(rec_file, play_file, out_file, tail_length) % % Computes the full matrix inversion to cancel echo from the % recording 'rec_file' using the far end signal 'play_file' using % a filter length of 'tail_length'. The output is saved to 'out_file'. function out = echo_diagnostic(rec_file, play_file, out_file, tail_length) F=fopen(rec_file,'rb'); rec=fread(F,Inf,'short'); fclose (F); F=fopen(play_file,'rb'); play=fread(F,Inf,'short'); fclose (F); rec = [rec; zeros(1024,1)]; play = [play; zeros(1024,1)]; N = length(rec); corr = real(ifft(fft(rec).*conj(fft(play)))); acorr = real(ifft(fft(play).*conj(fft(play)))); [a,b] = max(corr); if b > N/2 b = b-N; end printf ("Far end to near end delay is %d samples\n", b); if (b > .3*tail_length) printf ('This is too much delay, try delaying the far-end signal a bit\n'); else if (b < 0) printf ('You have a negative delay, the echo canceller has no chance to cancel anything!\n'); else printf ('Delay looks OK.\n'); end end end N2 = round(N/2); corr1 = real(ifft(fft(rec(1:N2)).*conj(fft(play(1:N2))))); corr2 = real(ifft(fft(rec(N2+1:end)).*conj(fft(play(N2+1:end))))); [a,b1] = max(corr1); if b1 > N2/2 b1 = b1-N2; end [a,b2] = max(corr2); if b2 > N2/2 b2 = b2-N2; end drift = (b1-b2)/N2; printf ('Drift estimate is %f%% (%d samples)\n', 100*drift, b1-b2); if abs(b1-b2) < 10 printf ('A drift of a few (+-10) samples is normal.\n'); else if abs(b1-b2) < 30 printf ('There may be (not sure) excessive clock drift. Is the capture and playback done on the same soundcard?\n'); else printf ('Your clock is drifting! No way the AEC will be able to do anything with that. Most likely, you''re doing capture and playback from two different cards.\n'); end end end acorr(1) = .001+1.00001*acorr(1); AtA = toeplitz(acorr(1:tail_length)); bb = corr(1:tail_length); h = AtA\bb; out = (rec - filter(h, 1, play)); F=fopen(out_file,'w'); fwrite(F,out,'short'); fclose (F);