;******************************************************************** ;* * ;* THIS FILE IS PART OF THE OggTheora SOFTWARE CODEC SOURCE CODE. * ;* USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS * ;* GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE * ;* IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING. * ;* * ;* THE Theora SOURCE CODE IS COPYRIGHT (C) 2002-2010 * ;* by the Xiph.Org Foundation and contributors http://www.xiph.org/ * ;* * ;******************************************************************** ; Original implementation: ; Copyright (C) 2009 Robin Watts for Pinknoise Productions Ltd ; last mod: $Id$ ;******************************************************************** AREA |.text|, CODE, READONLY GET armopts.s EXPORT oc_loop_filter_frag_rows_arm ; Which bit this is depends on the order of packing within a bitfield. ; Hopefully that doesn't change among any of the relevant compilers. OC_FRAG_CODED_FLAG * 1 ; Vanilla ARM v4 version loop_filter_h_arm PROC ; r0 = unsigned char *_pix ; r1 = int _ystride ; r2 = int *_bv ; preserves r0-r3 STMFD r13!,{r3-r6,r14} MOV r14,#8 MOV r6, #255 lfh_arm_lp LDRB r3, [r0, #-2] ; r3 = _pix[0] LDRB r12,[r0, #1] ; r12= _pix[3] LDRB r4, [r0, #-1] ; r4 = _pix[1] LDRB r5, [r0] ; r5 = _pix[2] SUB r3, r3, r12 ; r3 = _pix[0]-_pix[3]+4 ADD r3, r3, #4 SUB r12,r5, r4 ; r12= _pix[2]-_pix[1] ADD r12,r12,r12,LSL #1 ; r12= 3*(_pix[2]-_pix[1]) ADD r12,r12,r3 ; r12= _pix[0]-_pix[3]+3*(_pix[2]-_pix[1])+4 MOV r12,r12,ASR #3 LDRSB r12,[r2, r12] ; Stall (2 on Xscale) ADDS r4, r4, r12 CMPGT r6, r4 EORLT r4, r6, r4, ASR #32 SUBS r5, r5, r12 CMPGT r6, r5 EORLT r5, r6, r5, ASR #32 STRB r4, [r0, #-1] STRB r5, [r0], r1 SUBS r14,r14,#1 BGT lfh_arm_lp SUB r0, r0, r1, LSL #3 LDMFD r13!,{r3-r6,PC} ENDP loop_filter_v_arm PROC ; r0 = unsigned char *_pix ; r1 = int _ystride ; r2 = int *_bv ; preserves r0-r3 STMFD r13!,{r3-r6,r14} MOV r14,#8 MOV r6, #255 lfv_arm_lp LDRB r3, [r0, -r1, LSL #1] ; r3 = _pix[0] LDRB r12,[r0, r1] ; r12= _pix[3] LDRB r4, [r0, -r1] ; r4 = _pix[1] LDRB r5, [r0] ; r5 = _pix[2] SUB r3, r3, r12 ; r3 = _pix[0]-_pix[3]+4 ADD r3, r3, #4 SUB r12,r5, r4 ; r12= _pix[2]-_pix[1] ADD r12,r12,r12,LSL #1 ; r12= 3*(_pix[2]-_pix[1]) ADD r12,r12,r3 ; r12= _pix[0]-_pix[3]+3*(_pix[2]-_pix[1])+4 MOV r12,r12,ASR #3 LDRSB r12,[r2, r12] ; Stall (2 on Xscale) ADDS r4, r4, r12 CMPGT r6, r4 EORLT r4, r6, r4, ASR #32 SUBS r5, r5, r12 CMPGT r6, r5 EORLT r5, r6, r5, ASR #32 STRB r4, [r0, -r1] STRB r5, [r0], #1 SUBS r14,r14,#1 BGT lfv_arm_lp SUB r0, r0, #8 LDMFD r13!,{r3-r6,PC} ENDP oc_loop_filter_frag_rows_arm PROC ; r0 = _ref_frame_data ; r1 = _ystride ; r2 = _bv ; r3 = _frags ; r4 = _fragi0 ; r5 = _fragi0_end ; r6 = _fragi_top ; r7 = _fragi_bot ; r8 = _frag_buf_offs ; r9 = _nhfrags MOV r12,r13 STMFD r13!,{r0,r4-r11,r14} LDMFD r12,{r4-r9} ADD r2, r2, #127 ; _bv += 127 CMP r4, r5 ; if(_fragi0>=_fragi0_end) BGE oslffri_arm_end ; bail SUBS r9, r9, #1 ; r9 = _nhfrags-1 if (r9<=0) BLE oslffri_arm_end ; bail ADD r3, r3, r4, LSL #2 ; r3 = &_frags[fragi] ADD r8, r8, r4, LSL #2 ; r8 = &_frag_buf_offs[fragi] SUB r7, r7, r9 ; _fragi_bot -= _nhfrags; oslffri_arm_lp1 MOV r10,r4 ; r10= fragi = _fragi0 ADD r11,r4, r9 ; r11= fragi_end-1=fragi+_nhfrags-1 oslffri_arm_lp2 LDR r14,[r3], #4 ; r14= _frags[fragi] _frags++ LDR r0, [r13] ; r0 = _ref_frame_data LDR r12,[r8], #4 ; r12= _frag_buf_offs[fragi] _frag_buf_offs++ TST r14,#OC_FRAG_CODED_FLAG BEQ oslffri_arm_uncoded CMP r10,r4 ; if (fragi>_fragi0) ADD r0, r0, r12 ; r0 = _ref_frame_data + _frag_buf_offs[fragi] BLGT loop_filter_h_arm CMP r4, r6 ; if (_fragi0>_fragi_top) BLGT loop_filter_v_arm CMP r10,r11 ; if(fragi+1 AND r1, r1, #255 ; r1 = ll=r1&0xFF ORR r1, r1, r1, LSL #8 ; r1 = PKHBT r1, r1, r1, LSL #16 ; r1 = STR r1, [r0] MOV PC,r14 ENDP ; We could use the same strategy as the v filter below, but that would require ; 40 instructions to load the data and transpose it into columns and another ; 32 to write out the results at the end, plus the 52 instructions to do the ; filtering itself. ; This is slightly less, and less code, even assuming we could have shared the ; 52 instructions in the middle with the other function. ; It executes slightly fewer instructions than the ARMv6 approach David Conrad ; proposed for FFmpeg, but not by much: ; http://lists.mplayerhq.hu/pipermail/ffmpeg-devel/2010-February/083141.html ; His is a lot less code, though, because it only does two rows at once instead ; of four. loop_filter_h_v6 PROC ; r0 = unsigned char *_pix ; r1 = int _ystride ; r2 = int _ll ; preserves r0-r3 STMFD r13!,{r4-r11,r14} LDR r12,=0x10003 BL loop_filter_h_core_v6 ADD r0, r0, r1, LSL #2 BL loop_filter_h_core_v6 SUB r0, r0, r1, LSL #2 LDMFD r13!,{r4-r11,PC} ENDP loop_filter_h_core_v6 PROC ; r0 = unsigned char *_pix ; r1 = int _ystride ; r2 = int _ll ; r12= 0x10003 ; Preserves r0-r3, r12; Clobbers r4-r11. LDR r4,[r0, #-2]! ; r4 = ; Single issue LDR r5,[r0, r1]! ; r5 = UXTB16 r6, r4, ROR #16 ; r6 = UXTB16 r4, r4, ROR #8 ; r4 = UXTB16 r7, r5, ROR #16 ; r7 = UXTB16 r5, r5, ROR #8 ; r5 = PKHBT r8, r4, r5, LSL #16 ; r8 = <__|q1|__|p1> PKHBT r9, r6, r7, LSL #16 ; r9 = <__|q2|__|p2> SSUB16 r6, r4, r6 ; r6 = SMLAD r6, r6, r12,r12 ; r6 = SSUB16 r7, r5, r7 ; r7 = SMLAD r7, r7, r12,r12 ; r7 = LDR r4,[r0, r1]! ; r4 = MOV r6, r6, ASR #3 ; r6 = >3> LDR r5,[r0, r1]! ; r5 = PKHBT r11,r6, r7, LSL #13 ; r11= UXTB16 r6, r4, ROR #16 ; r6 = UXTB16 r11,r11 ; r11= <__|-R_q|__|-R_p> UXTB16 r4, r4, ROR #8 ; r4 = UXTB16 r7, r5, ROR #16 ; r7 = PKHBT r10,r6, r7, LSL #16 ; r10= <__|s2|__|r2> SSUB16 r6, r4, r6 ; r6 = UXTB16 r5, r5, ROR #8 ; r5 = SMLAD r6, r6, r12,r12 ; r6 = SSUB16 r7, r5, r7 ; r7 = SMLAD r7, r7, r12,r12 ; r7 = ORR r9, r9, r10, LSL #8 ; r9 = MOV r6, r6, ASR #3 ; r6 = >3> PKHBT r10,r4, r5, LSL #16 ; r10= <__|s1|__|r1> PKHBT r6, r6, r7, LSL #13 ; r6 = ORR r8, r8, r10, LSL #8 ; r8 = UXTB16 r6, r6 ; r6 = <__|-R_s|__|-R_r> MOV r10,#0 ORR r6, r11,r6, LSL #8 ; r6 = <-R_s|-R_q|-R_r|-R_p> ; Single issue ; There's no min, max or abs instruction. ; SSUB8 and SEL will work for abs, and we can do all the rest with ; unsigned saturated adds, which means the GE flags are still all ; set when we're done computing lflim(abs(R_i),L). ; This allows us to both add and subtract, and split the results by ; the original sign of R_i. SSUB8 r7, r10,r6 ; Single issue SEL r7, r7, r6 ; r7 = abs(R_i) ; Single issue UQADD8 r4, r7, r2 ; r4 = 255-max(2*L-abs(R_i),0) ; Single issue UQADD8 r7, r7, r4 ; Single issue UQSUB8 r7, r7, r4 ; r7 = min(abs(R_i),max(2*L-abs(R_i),0)) ; Single issue UQSUB8 r4, r8, r7 UQADD8 r5, r9, r7 UQADD8 r8, r8, r7 UQSUB8 r9, r9, r7 SEL r8, r8, r4 ; r8 = p1+lflim(R_i,L) SEL r9, r9, r5 ; r9 = p2-lflim(R_i,L) MOV r5, r9, LSR #24 ; r5 = s2 STRB r5, [r0,#2]! MOV r4, r8, LSR #24 ; r4 = s1 STRB r4, [r0,#-1] MOV r5, r9, LSR #8 ; r5 = r2 STRB r5, [r0,-r1]! MOV r4, r8, LSR #8 ; r4 = r1 STRB r4, [r0,#-1] MOV r5, r9, LSR #16 ; r5 = q2 STRB r5, [r0,-r1]! MOV r4, r8, LSR #16 ; r4 = q1 STRB r4, [r0,#-1] ; Single issue STRB r9, [r0,-r1]! ; Single issue STRB r8, [r0,#-1] MOV PC,r14 ENDP ; This uses the same strategy as the MMXEXT version for x86, except that UHADD8 ; computes (a+b>>1) instead of (a+b+1>>1) like PAVGB. ; This works just as well, with the following procedure for computing the ; filter value, f: ; u = ~UHADD8(p1,~p2); ; v = UHADD8(~p1,p2); ; m = v-u; ; a = m^UHADD8(m^p0,m^~p3); ; f = UHADD8(UHADD8(a,u1),v1); ; where f = 127+R, with R in [-127,128] defined as in the spec. ; This is exactly the same amount of arithmetic as the version that uses PAVGB ; as the basic operator. ; It executes about 2/3 the number of instructions of David Conrad's approach, ; but requires more code, because it does all eight columns at once, instead ; of four at a time. loop_filter_v_v6 PROC ; r0 = unsigned char *_pix ; r1 = int _ystride ; r2 = int _ll ; preserves r0-r11 STMFD r13!,{r4-r11,r14} LDRD r6, [r0, -r1]! ; r7, r6 = LDRD r4, [r0, -r1] ; r5, r4 = LDRD r8, [r0, r1]! ; r9, r8 = MVN r14,r6 ; r14= ~p1 LDRD r10,[r0, r1] ; r11,r10= ; Filter the first four columns. MVN r12,r8 ; r12= ~p2 UHADD8 r14,r14,r8 ; r14= v1=~p1+p2>>1 UHADD8 r12,r12,r6 ; r12= p1+~p2>>1 MVN r10, r10 ; r10=~p3 MVN r12,r12 ; r12= u1=~p1+p2+1>>1 SSUB8 r14,r14,r12 ; r14= m1=v1-u1 ; Single issue EOR r4, r4, r14 ; r4 = m1^p0 EOR r10,r10,r14 ; r10= m1^~p3 UHADD8 r4, r4, r10 ; r4 = (m1^p0)+(m1^~p3)>>1 ; Single issue EOR r4, r4, r14 ; r4 = a1=m1^((m1^p0)+(m1^~p3)>>1) SADD8 r14,r14,r12 ; r14= v1=m1+u1 UHADD8 r4, r4, r12 ; r4 = a1+u1>>1 MVN r12,r9 ; r12= ~p6 UHADD8 r4, r4, r14 ; r4 = f1=(a1+u1>>1)+v1>>1 ; Filter the second four columns. MVN r14,r7 ; r14= ~p5 UHADD8 r12,r12,r7 ; r12= p5+~p6>>1 UHADD8 r14,r14,r9 ; r14= v2=~p5+p6>>1 MVN r12,r12 ; r12= u2=~p5+p6+1>>1 MVN r11,r11 ; r11=~p7 SSUB8 r10,r14,r12 ; r10= m2=v2-u2 ; Single issue EOR r5, r5, r10 ; r5 = m2^p4 EOR r11,r11,r10 ; r11= m2^~p7 UHADD8 r5, r5, r11 ; r5 = (m2^p4)+(m2^~p7)>>1 ; Single issue EOR r5, r5, r10 ; r5 = a2=m2^((m2^p4)+(m2^~p7)>>1) ; Single issue UHADD8 r5, r5, r12 ; r5 = a2+u2>>1 LDR r12,=0x7F7F7F7F ; r12 = {127}x4 UHADD8 r5, r5, r14 ; r5 = f2=(a2+u2>>1)+v2>>1 ; Now split f[i] by sign. ; There's no min or max instruction. ; We could use SSUB8 and SEL, but this is just as many instructions and ; dual issues more (for v7 without NEON). UQSUB8 r10,r4, r12 ; r10= R_i>0?R_i:0 UQSUB8 r4, r12,r4 ; r4 = R_i<0?-R_i:0 UQADD8 r11,r10,r2 ; r11= 255-max(2*L-abs(R_i<0),0) UQADD8 r14,r4, r2 ; r14= 255-max(2*L-abs(R_i>0),0) UQADD8 r10,r10,r11 UQADD8 r4, r4, r14 UQSUB8 r10,r10,r11 ; r10= min(abs(R_i<0),max(2*L-abs(R_i<0),0)) UQSUB8 r4, r4, r14 ; r4 = min(abs(R_i>0),max(2*L-abs(R_i>0),0)) UQSUB8 r11,r5, r12 ; r11= R_i>0?R_i:0 UQADD8 r6, r6, r10 UQSUB8 r8, r8, r10 UQSUB8 r5, r12,r5 ; r5 = R_i<0?-R_i:0 UQSUB8 r6, r6, r4 ; r6 = p1+lflim(R_i,L) UQADD8 r8, r8, r4 ; r8 = p2-lflim(R_i,L) UQADD8 r10,r11,r2 ; r10= 255-max(2*L-abs(R_i<0),0) UQADD8 r14,r5, r2 ; r14= 255-max(2*L-abs(R_i>0),0) UQADD8 r11,r11,r10 UQADD8 r5, r5, r14 UQSUB8 r11,r11,r10 ; r11= min(abs(R_i<0),max(2*L-abs(R_i<0),0)) UQSUB8 r5, r5, r14 ; r5 = min(abs(R_i>0),max(2*L-abs(R_i>0),0)) UQADD8 r7, r7, r11 UQSUB8 r9, r9, r11 UQSUB8 r7, r7, r5 ; r7 = p5+lflim(R_i,L) STRD r6, [r0, -r1] ; [p5:p1] = [r7: r6] UQADD8 r9, r9, r5 ; r9 = p6-lflim(R_i,L) STRD r8, [r0] ; [p6:p2] = [r9: r8] LDMFD r13!,{r4-r11,PC} ENDP oc_loop_filter_frag_rows_v6 PROC ; r0 = _ref_frame_data ; r1 = _ystride ; r2 = _bv ; r3 = _frags ; r4 = _fragi0 ; r5 = _fragi0_end ; r6 = _fragi_top ; r7 = _fragi_bot ; r8 = _frag_buf_offs ; r9 = _nhfrags MOV r12,r13 STMFD r13!,{r0,r4-r11,r14} LDMFD r12,{r4-r9} LDR r2, [r2] ; ll = *(int *)_bv CMP r4, r5 ; if(_fragi0>=_fragi0_end) BGE oslffri_v6_end ; bail SUBS r9, r9, #1 ; r9 = _nhfrags-1 if (r9<=0) BLE oslffri_v6_end ; bail ADD r3, r3, r4, LSL #2 ; r3 = &_frags[fragi] ADD r8, r8, r4, LSL #2 ; r8 = &_frag_buf_offs[fragi] SUB r7, r7, r9 ; _fragi_bot -= _nhfrags; oslffri_v6_lp1 MOV r10,r4 ; r10= fragi = _fragi0 ADD r11,r4, r9 ; r11= fragi_end-1=fragi+_nhfrags-1 oslffri_v6_lp2 LDR r14,[r3], #4 ; r14= _frags[fragi] _frags++ LDR r0, [r13] ; r0 = _ref_frame_data LDR r12,[r8], #4 ; r12= _frag_buf_offs[fragi] _frag_buf_offs++ TST r14,#OC_FRAG_CODED_FLAG BEQ oslffri_v6_uncoded CMP r10,r4 ; if (fragi>_fragi0) ADD r0, r0, r12 ; r0 = _ref_frame_data + _frag_buf_offs[fragi] BLGT loop_filter_h_v6 CMP r4, r6 ; if (fragi0>_fragi_top) BLGT loop_filter_v_v6 CMP r10,r11 ; if(fragi+1>3 1,4 ADD r12,r12,r1, LSL #2 ; We want to do ; f = CLAMP(MIN(-2L-f,0), f, MAX(2L-f,0)) ; = ((f >= 0) ? MIN( f ,MAX(2L- f ,0)) : MAX( f , MIN(-2L- f ,0))) ; = ((f >= 0) ? MIN(|f|,MAX(2L-|f|,0)) : MAX(-|f|, MIN(-2L+|f|,0))) ; = ((f >= 0) ? MIN(|f|,MAX(2L-|f|,0)) :-MIN( |f|,-MIN(-2L+|f|,0))) ; = ((f >= 0) ? MIN(|f|,MAX(2L-|f|,0)) :-MIN( |f|, MAX( 2L-|f|,0))) ; So we've reduced the left and right hand terms to be the same, except ; for a negation. ; Stall x3 VABS.S16 Q9, Q0 ; Q9 = |f| in U16s 1,4 PLD [r12,-r1] VSHR.S16 Q0, Q0, #15 ; Q0 = -1 or 0 according to sign 1,3 PLD [r12] VQSUB.U16 Q10,Q15,Q9 ; Q10= MAX(2L-|f|,0) in U16s 1,4 PLD [r12,r1] VMOVL.U8 Q1, D2 ; Q2 = __UU__QQ__MM__II__EE__AA__66__22 2,3 PLD [r12,r1,LSL #1] VMIN.U16 Q9, Q10,Q9 ; Q9 = MIN(|f|,MAX(2L-|f|)) 1,4 ADD r12,r12,r1, LSL #2 ; Now we need to correct for the sign of f. ; For negative elements of Q0, we want to subtract the appropriate ; element of Q9. For positive elements we want to add them. No NEON ; instruction exists to do this, so we need to negate the negative ; elements, and we can then just add them. a-b = a-(1+!b) = a-1+!b VADD.S16 Q9, Q9, Q0 ; 1,3 PLD [r12,-r1] VEOR.S16 Q9, Q9, Q0 ; Q9 = real value of f 1,3 ; Bah. No VRSBW.U8 ; Stall (just 1 as Q9 not needed to second pipeline stage. I think.) VADDW.U8 Q2, Q9, D4 ; Q1 = xxTTxxPPxxLLxxHHxxDDxx99xx55xx11 1,3 VSUB.S16 Q1, Q1, Q9 ; Q2 = xxUUxxQQxxMMxxIIxxEExxAAxx66xx22 1,3 VQMOVUN.S16 D4, Q2 ; D4 = TTPPLLHHDD995511 1,1 VQMOVUN.S16 D2, Q1 ; D2 = UUQQMMIIEEAA6622 1,1 SUB r12,r0, #1 VTRN.8 D4, D2 ; D4 = QQPPIIHHAA992211 D2 = MMLLEEDD6655 1,1 VST1.16 {D4[0]}, [r12], r1 VST1.16 {D2[0]}, [r12], r1 VST1.16 {D4[1]}, [r12], r1 VST1.16 {D2[1]}, [r12], r1 VST1.16 {D4[2]}, [r12], r1 VST1.16 {D2[2]}, [r12], r1 VST1.16 {D4[3]}, [r12], r1 VST1.16 {D2[3]}, [r12], r1 MOV PC,r14 ENDP loop_filter_v_neon PROC ; r0 = unsigned char *_pix ; r1 = int _ystride ; r2 = int *_bv ; preserves r0-r3 ; We assume Q15= 2*L in U16s ; My best guesses at cycle counts (and latency)--vvv SUB r12,r0, r1, LSL #1 VLD1.64 {D0}, [r12@64], r1 ; D0 = SSOOKKGGCC884400 2,1 VLD1.64 {D2}, [r12@64], r1 ; D2 = TTPPLLHHDD995511 2,1 VLD1.64 {D4}, [r12@64], r1 ; D4 = UUQQMMIIEEAA6622 2,1 VLD1.64 {D6}, [r12@64] ; D6 = VVRRNNJJFFBB7733 2,1 VSUBL.U8 Q8, D4, D2 ; Q8 = 22 - 11 in S16s 1,3 VSUBL.U8 Q0, D0, D6 ; Q0 = 00 - 33 in S16s 1,3 ADD r12, #8 VADD.S16 Q0, Q0, Q8 ; 1,3 PLD [r12] VADD.S16 Q0, Q0, Q8 ; 1,3 PLD [r12,r1] VADD.S16 Q0, Q0, Q8 ; Q0 = [0-3]+3*[2-1] 1,3 SUB r12, r0, r1 VRSHR.S16 Q0, Q0, #3 ; Q0 = f = ([0-3]+3*[2-1]+4)>>3 1,4 ; We want to do ; f = CLAMP(MIN(-2L-f,0), f, MAX(2L-f,0)) ; = ((f >= 0) ? MIN( f ,MAX(2L- f ,0)) : MAX( f , MIN(-2L- f ,0))) ; = ((f >= 0) ? MIN(|f|,MAX(2L-|f|,0)) : MAX(-|f|, MIN(-2L+|f|,0))) ; = ((f >= 0) ? MIN(|f|,MAX(2L-|f|,0)) :-MIN( |f|,-MIN(-2L+|f|,0))) ; = ((f >= 0) ? MIN(|f|,MAX(2L-|f|,0)) :-MIN( |f|, MAX( 2L-|f|,0))) ; So we've reduced the left and right hand terms to be the same, except ; for a negation. ; Stall x3 VABS.S16 Q9, Q0 ; Q9 = |f| in U16s 1,4 VSHR.S16 Q0, Q0, #15 ; Q0 = -1 or 0 according to sign 1,3 ; Stall x2 VQSUB.U16 Q10,Q15,Q9 ; Q10= MAX(2L-|f|,0) in U16s 1,4 VMOVL.U8 Q2, D4 ; Q2 = __UU__QQ__MM__II__EE__AA__66__22 2,3 ; Stall x2 VMIN.U16 Q9, Q10,Q9 ; Q9 = MIN(|f|,MAX(2L-|f|)) 1,4 ; Now we need to correct for the sign of f. ; For negative elements of Q0, we want to subtract the appropriate ; element of Q9. For positive elements we want to add them. No NEON ; instruction exists to do this, so we need to negate the negative ; elements, and we can then just add them. a-b = a-(1+!b) = a-1+!b ; Stall x3 VADD.S16 Q9, Q9, Q0 ; 1,3 ; Stall x2 VEOR.S16 Q9, Q9, Q0 ; Q9 = real value of f 1,3 ; Bah. No VRSBW.U8 ; Stall (just 1 as Q9 not needed to second pipeline stage. I think.) VADDW.U8 Q1, Q9, D2 ; Q1 = xxTTxxPPxxLLxxHHxxDDxx99xx55xx11 1,3 VSUB.S16 Q2, Q2, Q9 ; Q2 = xxUUxxQQxxMMxxIIxxEExxAAxx66xx22 1,3 VQMOVUN.S16 D2, Q1 ; D2 = TTPPLLHHDD995511 1,1 VQMOVUN.S16 D4, Q2 ; D4 = UUQQMMIIEEAA6622 1,1 VST1.64 {D2}, [r12@64], r1 VST1.64 {D4}, [r12@64], r1 MOV PC,r14 ENDP oc_loop_filter_frag_rows_neon PROC ; r0 = _ref_frame_data ; r1 = _ystride ; r2 = _bv ; r3 = _frags ; r4 = _fragi0 ; r5 = _fragi0_end ; r6 = _fragi_top ; r7 = _fragi_bot ; r8 = _frag_buf_offs ; r9 = _nhfrags MOV r12,r13 STMFD r13!,{r0,r4-r11,r14} LDMFD r12,{r4-r9} CMP r4, r5 ; if(_fragi0>=_fragi0_end) BGE oslffri_neon_end; bail SUBS r9, r9, #1 ; r9 = _nhfrags-1 if (r9<=0) BLE oslffri_neon_end ; bail VLD1.64 {D30,D31}, [r2@128] ; Q15= 2L in U16s ADD r3, r3, r4, LSL #2 ; r3 = &_frags[fragi] ADD r8, r8, r4, LSL #2 ; r8 = &_frag_buf_offs[fragi] SUB r7, r7, r9 ; _fragi_bot -= _nhfrags; oslffri_neon_lp1 MOV r10,r4 ; r10= fragi = _fragi0 ADD r11,r4, r9 ; r11= fragi_end-1=fragi+_nhfrags-1 oslffri_neon_lp2 LDR r14,[r3], #4 ; r14= _frags[fragi] _frags++ LDR r0, [r13] ; r0 = _ref_frame_data LDR r12,[r8], #4 ; r12= _frag_buf_offs[fragi] _frag_buf_offs++ TST r14,#OC_FRAG_CODED_FLAG BEQ oslffri_neon_uncoded CMP r10,r4 ; if (fragi>_fragi0) ADD r0, r0, r12 ; r0 = _ref_frame_data + _frag_buf_offs[fragi] BLGT loop_filter_h_neon CMP r4, r6 ; if (_fragi0>_fragi_top) BLGT loop_filter_v_neon CMP r10,r11 ; if(fragi+1